Lorentz Currents

24 年 12 月 12 日 星期四
235 字
2 分钟

Lorentz Currents

 A global lorentz transformation xμΛ νμxνx^\mu \to \Lambda^\mu_{\ \,\nu}x^\nu should produce a conserved current KK. Now we try to derive such a current.

Consider a infinitesimal lorentz transformation

Λ νμ=I νμ+12ωαβJ ναβμ+\Lambda^\mu_{\ \,\nu} = I^\mu_{\ \,\nu} + \frac{1}{2}\omega_{\alpha\beta}J^{\alpha\beta\mu}_{\quad\ \,\nu} + \cdots

where JJ is antisymmetric in the first two indices :

J ναβμ=J νβαμJ^{\alpha\beta\mu}_{\quad\ \,\nu} = -J^{\beta\alpha\mu}_{\quad\ \,\nu}

then δxμ\delta x^\mu is the difference between such a small spin and the original xμx^\mu, that is

δxμ=12ωαβJ ναβμxν.\delta x^\mu = \frac{1}{2}\omega_{\alpha\beta}J^{\alpha\beta\mu}_{\quad\ \,\nu}x^\nu.

 Now we turn to look at the arbitrary current JμJ^\mu. Such a current must satisfy μJμ=0\partial_\mu J^\mu = 0, which lead to

μ[Lδxμ+L(μϕ)δϕ]=0\partial_\mu \left[\mathcal{L}\delta x^\mu + \frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\delta\phi \right] = 0

it is then obvious that

δϕ=ϕ(xμ)ϕ(Λ νμxν)=12ωαβJ ναβμxνμϕ\delta\phi = \phi(x^\mu) - \phi(\Lambda^\mu_{\ \,\nu}x^\nu) = -\frac{1}{2}\omega_{\alpha\beta}J^{\alpha\beta\mu}_{\quad\ \,\nu}x^\nu\partial_\mu\phi

then the whole equation becomes

μ[L(μϕ)λϕωαβJ ναβλxνLωαβJ ναβμxν]=0\partial_\mu\left[\frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\partial_\lambda\phi\omega_{\alpha\beta}J^{\alpha\beta\lambda}_{\quad\ \,\nu}x^\nu - \mathcal{L}\omega_{\alpha\beta}J^{\alpha\beta\mu}_{\quad\ \,\nu}x^\nu\right] =0

consider an antisymmetric tensor gμνg_{\mu\nu}. We will have the following:

gμνxμxν=[12(gμν+gνμ)+12(gμνgνμ)]xμxν=12(gμνxμxνgνμxμxν)=12gμν(xμxνxνxμ).\begin{aligned} g_{\mu\nu}x^\mu x^\nu &= \left[\frac{1}{2}(g_{\mu\nu} + g_{\nu\mu}) + \frac{1}{2}(g_{\mu\nu} - g_{\nu\mu})\right]x^\mu x^\nu\\ &= \frac{1}{2}(g_{\mu\nu}x^\mu x^\nu - g_{\nu\mu}x^\mu x^\nu)\\ &= \frac{1}{2}g_{\mu\nu}(x^\mu x^\nu - x^\nu x^\mu). \end{aligned}

Then the whole current-conservation-equation will become

μωνλ[L(μϕ)λϕxνL(μϕ)νϕxλLgλμxν+Lgνμxλ]=0μωνλ[(L(μϕ)λϕLgλμ)xν(L(μϕ)νϕLgνμ)xλ]=0μωνλ[TμλxνTμνxλ]=0ωνλ(TμλxνTμνxλ)=Jμ\begin{gathered} \partial_\mu\omega_{\nu\lambda}\left[\frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\partial^\lambda\phi x^\nu - \frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\partial^\nu\phi x^\lambda - \mathcal{L}g^{\lambda\mu}x^\nu + \mathcal{L}g^{\nu\mu}x^\lambda\right] =0\\ \partial_\mu\omega_{\nu\lambda}\left[\left(\frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\partial^\lambda\phi- \mathcal{L}g^{\lambda\mu}\right)x^\nu - \left(\frac{\partial \mathcal{L}}{\partial(\partial_\mu\phi)}\partial^\nu\phi - \mathcal{L}g^{\nu\mu}\right)x^\lambda\right] =0\\ \partial_\mu\omega_{\nu\lambda}\left[T^{\mu\lambda}x^\nu - T^{\mu\nu}x^\lambda\right] = 0\\ \omega_{\nu\lambda}\left(T^{\mu\lambda}x^\nu - T^{\mu\nu}x^\lambda\right) = J^\mu \end{gathered}

in which we used the fact that

J ναβμ=Jλναβgμλ=(δλαδνβδναδλβ)gμλ.J^{\alpha\beta\mu}_{\quad\ \,\nu} = J^{\alpha\beta}_{\quad\lambda\nu}g^{\mu\lambda} = (\delta^\alpha_\lambda\delta^\beta_\nu - \delta^\alpha_\nu\delta^\beta_\lambda)g^{\mu\lambda}.

Having ω\omega as an arbitrary parameter, the part inside the brackets is a conserved tensor as well, namely

μ(TμλxνTμνxλ)=0μKμνλ=0\partial_\mu\left(T^{\mu\lambda}x^\nu - T^{\mu\nu}x^\lambda\right) = 0 \Longrightarrow \partial_\mu K^{\mu\nu\lambda} = 0

where the KμνλK^{\mu\nu\lambda} is our Lorentz Current.

文章标题:Lorentz Currents

文章作者:Whitney

文章链接:https://phymani.me/posts/lorentzcurrents[复制]

最后修改时间:


商业转载请联系站长获得授权,非商业转载请注明本文出处及文章链接,您可以自由地在任何媒体以任何形式复制和分发作品,也可以修改和创作,但是分发衍生作品时必须采用相同的许可协议。
本文采用CC BY-NC-SA 4.0进行许可。